Showing posts with label galaxy. Show all posts
Showing posts with label galaxy. Show all posts

Friday, 30 September 2016

Star Escapes Black Hole with Minor Damage

Star Escapes Black Hole with Minor Damage


Scientia — Astronomers have gotten the closest look yet at what happens when a black hole takes a bite out of a star—and the star lives to tell the tale.


black hole, supermassive black holes, galaxy, Royal Astronomical Society, planet, solar system




We may think of black holes as swallowing entire stars—or any other object that wanders too close to their immense gravity. But sometimes, a star that is almost captured by a black hole escapes with only a portion of its mass torn off. Such was the case for a star some 650 million light years away toward Ursa Major, the constellation that contains the “Big Dipper,” where a supermassive black hole tore off a chunk of material from a star that got away.


Astronomers at The Ohio State University couldn’t see the star itself with their All-Sky Automated Survey for Supernovae (ASAS-SN, pronounced “assassin”). But they did see the light that flared as the black hole “ate” the material that it managed to capture.


black hole, supermassive black holes, galaxy, Royal Astronomical Society, planet, solar system





In a paper to appear in the Monthly Notices of the Royal Astronomical Society, they report that the star and the black hole are located in a galaxy outside of the newly dubbed Laniakea Supercluster, of which our home Milky Way Galaxy is a part.


If Laniakea is our galactic “city,” this event—called a “tidal disruption event,” or TDE— happened in our larger metropolitan area. Still, it’s the closest TDE ever spotted, and it gives astronomers the best chance yet of learning more about how supermassive black holes form and grow.


black hole, supermassive black holes, galaxy, Royal Astronomical Society, planet, solar system


ASAS-SN has so far spotted more than 60 bright and nearby supernovae; one of the program’s other goals is to try to determine how often TDEs happen in the nearby universe. But study co-author Krzysztof Stanek, professor of astronomy at Ohio State, and his collaborators were surprised to find one in January 2014, just a few months after ASAS-SN’s four telescopes in Hawaii began gathering data.


To Stanek, the fact that the survey made such a rare find so quickly suggests that TDEs may be more common than astronomers realized.


black hole, supermassive black holes, galaxy, Royal Astronomical Society, planet, solar system





Star Escapes Black Hole with Minor Damage

Saturday, 2 January 2016

Hubble Views Two Galaxies Merging

Galaxies Merging


Galaxies Merging, Hubble Telescope, NASA, ESA, galaxy, Galaxies, Merging, stars, planets, sola systems

This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the galaxy NGC 6052, located around 230 million light-years away in the constellation of Hercules. It would be reasonable to think of this as a single abnormal galaxy, and it was originally classified as such. However, it is in fact a “new” galaxy in the process of forming. Two separate galaxies have been gradually drawn together, attracted by gravity, and have collided. We now see them merging into a single structure. As the merging process continues, individual stars are thrown out of their original orbits and placed onto entirely new paths, some very distant from the region of the collision itself. Since the stars produce the light we see, the “galaxy” now appears to have a highly chaotic shape. Eventually, this new galaxy will settle down into a stable shape, which may not resemble either of the two original galaxies.


Scientia — This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the galaxy NGC 6052, located around 230 million light-years away in the constellation of Hercules.

It would be reasonable to think of this as a single abnormal galaxy, and it was originally classified as such. However, it is in fact a “new” galaxy in the process of forming. Two separate galaxies have been gradually drawn together, attracted by gravity, and have collided. We now see them merging into a single structure.


As the merging process continues, individual stars are thrown out of their original orbits and placed onto entirely new paths, some very distant from the region of the collision itself. Since the stars produce the light we see, the “galaxy” now appears to have a highly chaotic shape. Eventually, this new galaxy will settle down into a stable shape, which may not resemble either of the two original galaxies.





What is the Wide Field Planetary Camera 2

The Wide Field and Planetary Camera 2 (WFPC2) was Hubble’s workhorse camera for many years. It recorded images through a selection of 48 colour filters covering a spectral range from far-ultraviolet to visible and near-infrared wavelengths. The ‘heart’ of WFPC2 consisted of an L-shaped trio of wide-field sensors and a smaller, high resolution (Planetary) Camera placed at the square’s remaining corner.


WFPC2 produced most of the stunning images that have been released as public outreach images over the years. Its resolution and excellent quality were some of the reasons that WFPC2 was the most used instrument in the first 13 years of Hubble’s life.


WFPC2 was replaced by WFC3 during Servicing Mission 4 in 2009.


After being brought down by the Space Shuttle, WFPC2 was put on display at the Smithsonian National Air and Space Museum in Washington DC, alongside parts from its predecessor, WFPC1.


Galaxies Merging, Hubble Telescope, NASA, ESA, galaxy, Galaxies, Merging, stars, planets, sola systems, Wide Field Planetary Camera 2

WFPC2 is being readied for insertion into Hubble during the First Servicing Mission.


Galaxies Merging, Hubble Telescope, NASA, ESA, galaxy, Galaxies, Merging, stars, planets, sola systems, Wide Field Planetary Camera 2

This colourful image from the Hubble Space Telescope shows the collision of two gases near a dying star. Astronomers have dubbed the tadpole-like objects in the upper right-hand corner ‘cometary knots’ because their glowing heads and gossamer tails resemble comets.
This colorful image from the Hubble Space Telescope shows the collision of two gases near a dying star.
Astronomers have dubbed the tadpole-like objects in the upper right-hand corner ‘cometary knots’ because their glowing heads and gossamer tails resemble comets.
Credit:
Robert O’Dell, Kerry P. Handron (Rice University, Houston, Texas) and NASA/ESA





– Credit and Resource –


Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
Text credit: European Space Agency




Hubble Views Two Galaxies Merging

Tuesday, 27 October 2015

Huge Flare from Black Hole

Scientia — The baffling and strange behaviors of black holes have become somewhat less mysterious recently, with new observations from NASA’s Explorer missions Swift and the Nuclear Spectroscopic Telescope Array, or NuSTAR. The two space telescopes caught a supermassive black hole in the midst of a giant eruption of X-ray light, helping astronomers address an ongoing puzzle: How do supermassive black holes flare?


X-rays, corona , NuSTAR, Black hole, galaxy, Supermassive black holes, NASA, Nuclear Spectroscopic Telescope Array

This diagram shows how a shifting feature, called a corona, can create a flare of X-rays around a black hole. Credit: NASA/JPL-Caltech


The results suggest that supermassive black holes send out beams of X-rays when their surrounding coronas—sources of extremely energetic particles—shoot, or launch, away from the black holes.


“This is the first time we have been able to link the launching of the corona to a flare,” said Dan Wilkins of Saint Mary’s University in Halifax, Canada, lead author of a new paper on the results appearing in the Monthly Notices of the Royal Astronomical Society. “This will help us understand how supermassive black holes power some of the brightest objects in the universe.”






Supermassive black holes don’t give off any light themselves, but they are often encircled by disks of hot, glowing material. The gravity of a black hole pulls swirling gas into it, heating this material and causing it to shine with different types of light. Another source of radiation near a black hole is the corona. Coronas are made up of highly energetic particles that generate X-ray light, but details about their appearance, and how they form, are unclear.


Astronomers think coronas have one of two likely configurations. The “lamppost” model says they are compact sources of light, similar to light bulbs, that sit above and below the black hole, along its rotation axis. The other model proposes that the coronas are spread out more diffusely, either as a larger cloud around the black hole, or as a “sandwich” that envelops the surrounding disk of material like slices of bread. In fact, it’s possible that coronas switch between both the lamppost and sandwich configurations.


The new data support the “lamppost” model—and demonstrate, in the finest detail yet, how the light-bulb-like coronas move. The observations began when Swift, which monitors the sky for cosmic outbursts of X-rays and gamma rays, caught a large flare coming from the supermassive black hole called Markarian 335, or Mrk 335, located 324 million light-years away in the direction of the constellation Pegasus. This supermassive black hole, which sits at the center of a galaxy, was once one of the brightest X-ray sources in the sky.


“Something very strange happened in 2007, when Mrk 335 faded by a factor of 30. What we have found is that it continues to erupt in flares but has not reached the brightness levels and stability seen before,” said Luigi Gallo, the principal investigator for the project at Saint Mary’s University. Another co-author, Dirk Grupe of Morehead State University in Kentucky, has been using Swift to regularly monitor the black hole since 2007.


In September 2014, Swift caught Mrk 335 in a huge flare. Once Gallo found out, he sent a request to the NuSTAR team to quickly follow up on the object as part of a “target of opportunity” program, where the observatory’s previously planned observing schedule is interrupted for important events. Eight days later, NuSTAR set its X-ray eyes on the target, witnessing the final half of the flare event.




After careful scrutiny of the data, the astronomers realized they were seeing the ejection, and eventual collapse, of the black hole’s corona.


“The corona gathered inward at first and then launched upwards like a jet,” said Wilkins. “We still don’t know how jets in black holes form, but it’s an exciting possibility that this black hole’s corona was beginning to form the base of a jet before it collapsed.”


How could the researchers tell the corona moved? The corona gives off X-ray light that has a slightly different spectrum—X-ray “colors”—than the light coming from the disk around the black hole. By analyzing a spectrum of X-ray light from Mrk 335 across a range of wavelengths observed by both Swift and NuSTAR, the researchers could tell that the corona X-ray light had brightened—and that this brightening was due to the motion of the corona.


Coronas can move very fast. The corona associated with Mrk 335, according to the scientists, was traveling at about 20 percent the speed of light. When this happens, and the corona launches in our direction, its light is brightened in an effect called relativistic Doppler boosting.


Putting this all together, the results show that the X-ray flare from this black hole was caused by the ejected corona.


“The nature of the energetic source of X-rays we call the corona is mysterious, but now with the ability to see dramatic changes like this we are getting clues about its size and structure,” said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology in Pasadena, who was not affiliated with the study.


Many other black hole brainteasers remain. For example, astronomers want to understand what causes the ejection of the corona in the first place.




– Credit and Resource –


Journal reference: Monthly Notices of the Royal Astronomical Society




Huge Flare from Black Hole

Thursday, 24 September 2015

What is Dark Matter and Dark Energy?

Dark Energy and Dark Matter


In the early 1990s, one thing was fairly certain about the expansion of the Universe. It might have enough energy density to stop its expansion and recollapse, it might have so little energy density that it would never stop expanding, but gravity was certain to slow the expansion as time went on. Granted, the slowing had not been observed, but, theoretically, the Universe had to slow. The Universe is full of matter and the attractive force of gravity pulls all matter together. Then came 1998 and the Hubble Space Telescope (HST) observations of very distant supernovae that showed that, a long time ago, the Universe was actually expanding more slowly than it is today. So the expansion of the Universe has not been slowing due to gravity, as everyone thought, it has been accelerating. No one expected this, no one knew how to explain it. But something was causing it.


Eventually theorists came up with three sorts of explanations. Maybe it was a result of a long-discarded version of Einstein’s theory of gravity, one that contained what was called a “cosmological constant.” Maybe there was some strange kind of energy-fluid that filled space. Maybe there is something wrong with Einstein’s theory of gravity and a new theory could include some kind of field that creates this cosmic acceleration. Theorists still don’t know what the correct explanation is, but they have given the solution a name. It is called dark energy.






What Is Dark Energy?


More is unknown than is known. We know how much dark energy there is because we know how it affects the Universe’s expansion. Other than that, it is a complete mystery. But it is an important mystery. It turns out that roughly 68% of the Universe is dark energy. Dark matter makes up about 27%. The rest – everything on Earth, everything ever observed with all of our instruments, all normal matter – adds up to less than 5% of the Universe. Come to think of it, maybe it shouldn’t be called “normal” matter at all, since it is such a small fraction of the Universe.

Freedawn, Scientia, Dark Energy, Dark Matter, Space, Universe, matter, mass, space, Albert Einstein, cosmological constant, gravity , Hubble Space Telescope

This diagram reveals changes in the rate of expansion since the universe’s birth 15 billion years ago. The more shallow the curve, the faster the rate of expansion. The curve changes noticeably about 7.5 billion years ago, when objects in the universe began flying apart as a faster rate. Astronomers theorize that the faster expansion rate is due to a mysterious, dark force that is pulling galaxies apart.
NASA/STSci/Ann Feild



One explanation for dark energy is that it is a property of space. Albert Einstein was the first person to realize that empty space is not nothing. Space has amazing properties, many of which are just beginning to be understood. The first property that Einstein discovered is that it is possible for more space to come into existence. Then one version of Einstein’s gravity theory, the version that contains a cosmological constant, makes a second prediction: “empty space” can possess its own energy. Because this energy is a property of space itself, it would not be diluted as space expands. As more space comes into existence, more of this energy-of-space would appear. As a result, this form of energy would cause the Universe to expand faster and faster. Unfortunately, no one understands why the cosmological constant should even be there, much less why it would have exactly the right value to cause the observed acceleration of the Universe.


Another explanation for how space acquires energy comes from the quantum theory of matter. In this theory, “empty space” is actually full of temporary (“virtual”) particles that continually form and then disappear. But when physicists tried to calculate how much energy this would give empty space, the answer came out wrong – wrong by a lot. The number came out 10120 times too big. That’s a 1 with 120 zeros after it. It’s hard to get an answer that bad. So the mystery continues.


Another explanation for dark energy is that it is a new kind of dynamical energy fluid or field, something that fills all of space but something whose effect on the expansion of the Universe is the opposite of that of matter and normal energy. Some theorists have named this “quintessence,” after the fifth element of the Greek philosophers. But, if quintessence is the answer, we still don’t know what it is like, what it interacts with, or why it exists. So the mystery continues.
galaxy, galaxy cluster, Freedawn, Scientia, Dark Energy, Dark Matter, Space, Universe, matter, mass, space, Albert Einstein, cosmological constant, gravity , Hubble Space Telescope



A last possibility is that Einstein’s theory of gravity is not correct. That would not only affect the expansion of the Universe, but it would also affect the way that normal matter in galaxies and clusters of galaxies behaved. This fact would provide a way to decide if the solution to the dark energy problem is a new gravity theory or not: we could observe how galaxies come together in clusters. But if it does turn out that a new theory of gravity is needed, what kind of theory would it be? How could it correctly describe the motion of the bodies in the Solar System, as Einstein’s theory is known to do, and still give us the different prediction for the Universe that we need? There are candidate theories, but none are compelling. So the mystery continues.




The thing that is needed to decide between dark energy possibilities – a property of space, a new dynamic fluid, or a new theory of gravity – is more data, better data.


What is Dark Matter?



By fitting a theoretical model of the composition of the Universe to the combined set of cosmological observations, scientists have come up with the composition that we described above, ~68% dark energy, ~27% dark matter, ~5% normal matter. What is dark matter?


We are much more certain what dark matter is not than we are what it is. First, it is dark, meaning that it is not in the form of stars and planets that we see. Observations show that there is far too little visible matter in the Universe to make up the 27% required by the observations. Second, it is not in the form of dark clouds of normal matter, matter made up of particles called baryons. We know this because we would be able to detect baryonic clouds by their absorption of radiation passing through them. Third, dark matter is not antimatter, because we do not see the unique gamma rays that are produced when antimatter annihilates with matter. Finally, we can rule out large galaxy-sized black holes on the basis of how many gravitational lenses we see. High concentrations of matter bend light passing near them from objects further away, but we do not see enough lensing events to suggest that such objects to make up the required 25% dark matter contribution.

galaxy, galaxy cluster, Freedawn, Scientia, Dark Energy, Dark Matter, Space, Universe, matter, mass, space, Albert Einstein, cosmological constant, gravity , Hubble Space Telescope

One of the most complicated and dramatic collisions between galaxy clusters ever seen is captured in this new composite image of Abell 2744. The blue shows a map of the total mass concentration (mostly dark matter).



However, at this point, there are still a few dark matter possibilities that are viable. Baryonic matter could still make up the dark matter if it were all tied up in brown dwarfs or in small, dense chunks of heavy elements. These possibilities are known as massive compact halo objects, or “MACHOs”. But the most common view is that dark matter is not baryonic at all, but that it is made up of other, more exotic particles like axions or WIMPS (Weakly Interacting Massive Particles)





What is Dark Matter and Dark Energy?

Dark Matter Core Defies Explanation in Hubble Image

Dark Matter, Freedaw, Scientia, Hubble, dark matter, dark core, galaxy , galaxy cluster,galactic


Scientia — It was the result no one wanted to believe. Astronomers observed what appeared to be a clump of dark matter left behind during a bizarre wreck between massive clusters of galaxies.


The dark matter collected into a “dark core” containing far fewer galaxies than would be expected if the dark matter and galaxies hung together. Most of the galaxies apparently have sailed far away from the collision. This result could present a challenge to basic theories of dark matter, which predict that galaxies should be anchored to the invisible substance, even during the shock of a collision.






The initial observations, made in 2007, were so unusual that astronomers shrugged them off as unreal, due to poor data. However, new results from NASA’s Hubble Space Telescope confirm that dark matter and galaxies parted ways in the gigantic merging galaxy cluster called Abell 520, located 2.4 billion light-years away.


Now, astronomers are left with the challenge of trying to explain dark matter’s seemingly oddball behavior in this cluster.


“This result is a puzzle,” said astronomer James Jee of the University of California, Davis, leader of the Hubble study. “Dark matter is not behaving as predicted, and it’s not obviously clear what is going on. Theories of galaxy formation and dark matter must explain what we are seeing.”


A paper reporting the team’s results has been accepted for publication in The Astrophysical Journal and is available online.


First detected about 80 years ago, dark matter is thought to be the gravitational “glue” that holds galaxies together. The mysterious invisible substance is not made of the same kind of matter that makes up stars, planets, and people. Astronomers know little about dark matter, yet it accounts for most of the universe’s mass.


They have deduced dark matter’s existence by observing its ghostly gravitational influence on normal matter. It’s like hearing the music but not seeing the band.


One way to study dark matter is by analyzing smashups between galaxy clusters, the largest structures in the universe. When galaxy clusters collide, astronomers expect galaxies to tag along with the dark matter, like a dog on a leash. Clouds of intergalactic gas, however, plow into one another, slow down, and lag behind the impact.


That theory was supported by visible-light and X-ray observations of a colossal collision between two galaxy clusters called the Bullet Cluster. The galactic grouping has become a textbook example of how dark matter should behave.


But studies of Abell 520 showed that dark matter’s behavior may not be so simple. The original observations found that the system’s core was rich in dark matter and hot gas but contained no luminous galaxies, which normally would be seen in the same location as the dark matter. NASA’s Chandra X-ray Observatory detected the hot gas. Astronomers used the Canada-France-Hawaii and Subaru telescopes atop Mauna Kea to infer the location of dark matter by measuring how the mysterious substance bends light from more distant background galaxies, an effect called gravitational lensing.


The astronomers then turned Hubble’s Wide Field Planetary Camera 2 to help bail them out of this cosmic conundrum. Instead, to their chagrin, the Hubble observations helped confirm the earlier findings. Astronomers used Hubble to map the dark matter in the cluster through the gravitational lensing technique.


“Observations like those of Abell 520 are humbling in the sense that in spite of all the leaps and bounds in our understanding, every now and then, we are stopped cold,” explained Arif Babul of the University of Victoria in British Columbia, the team’s senior theorist.




Is Abell 520 an oddball, or is the prevailing picture of dark matter flawed? Jee thinks it’s too soon to tell.


“We know of maybe six examples of high-speed galaxy cluster collisions where the dark matter has been mapped,” Jee said. “But the Bullet Cluster and Abell 520 are the two that show the clearest evidence of recent mergers, and they are inconsistent with each other. No single theory explains the different behavior of dark matter in those two collisions. We need more examples.”


The team has proposed a half-dozen explanations for the findings, but each is unsettling for astronomers. “It’s pick your poison,” said team member Andisheh Mahdavi of San Francisco State University in California, who led the original Abell 520 observations in 2007. One possible explanation for the discrepancy is that Abell 520 was a more complicated interaction than the Bullet Cluster encounter. Abell 520 may have formed from a collision between three galaxy clusters, instead of just two colliding systems in the case of the Bullet Cluster.


Another scenario is that some dark matter may be what astronomers call “sticky.” Like two snowballs smashing together, normal matter slams into each other during a collision and slows down. But dark matter blobs are thought to pass through each other during an encounter without slowing down. This scenario proposes that some dark matter interacts with itself and stays behind when galaxy clusters collide.


A third possibility is that the core contained many galaxies, but they were too dim to be seen, even by Hubble. Those galaxies would have to have formed dramatically fewer stars than other normal galaxies. Armed with the Hubble data, the group hopes to create a computer simulation to try to reconstruct the collision, hoping that it yields some answers to dark matter’s weird behavior.




– Credit and Resource –


Hubble




Dark Matter Core Defies Explanation in Hubble Image

Friday, 18 September 2015

What Hubble Observed

Freedawn, Scientia, Galaxy, space, Hubble, NASA, Galaxies, Evolution

It is known today that merging galaxies play a large role in the evolution of galaxies and the formation of elliptical galaxies in particular. However there are only a few merging systems close enough to be observed in depth. The pair of interacting galaxies seen here — known as NGC 3921 — is one of these systems.


NGC 3921 — found in the constellation of Ursa Major (The Great Bear) — is an interacting pair of disk galaxies in the late stages of its merger. Observations show that both of the galaxies involved were about the same mass and collided about 700 million years ago. You can see clearly in this image the disturbed morphology, tails and loops characteristic of a post-merger.


The clash of galaxies caused a rush of star formation and previous Hubble observations showed over 1,000 bright, young star clusters bursting to life at the heart of the galaxy pair.


Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt

Text credit: European Space Agency

Last Updated: Sep. 18, 2015

Editor: Ashley Morrow


 






Hubble Looks at Stunning Spiral


Freedawn, Scientia, Galaxy, space, Hubble, NASA, Galaxies, Evolution, Spiral, J04542829-6625280, LEDA 89996, Milky Way

This little-known galaxy, officially named J04542829-6625280, but most often referred to as LEDA 89996, is a classic example of a spiral galaxy. The galaxy is much like our own galaxy, the Milky Way. The disk-shaped galaxy is seen face on, revealing the winding structure of the spiral arms. Dark patches in these spiral arms are in fact dust and gas — the raw materials for new stars. The many young stars that form in these regions make the spiral arms appear bright and bluish.


The galaxy sits in a vibrant area of the night sky within the constellation of Dorado (The Swordfish), and appears very close to the Large Magellanic Cloud — one of the satellite galaxies of the Milky Way.


The observations were carried out with the high resolution channel of Hubble’s Advanced Camera for Surveys.


Image credit: ESA/Hubble & NASA, Acknowledgement: Flickr user C. Claude

Text credit: European Space Agency

Last Updated: July 31, 2015

Editor: Ashley Morrow


 




Hubble Sees a Galactic Sunflower


Freedawn, Scientia, Galaxy, space, Hubble, NASA, Galaxies, Evolution, Spiral, J04542829-6625280, LEDA 89996, Milky Way

The arrangement of the spiral arms in the galaxy Messier 63, seen here in an image from the NASA/ESA Hubble Space Telescope, recall the pattern at the center of a sunflower. So the nickname for this cosmic object — the Sunflower Galaxy — is no coincidence.


Discovered by Pierre Mechain in 1779, the galaxy later made it as the 63rd entry into fellow French astronomer Charles Messier’s famous catalogue, published in 1781. The two astronomers spotted the Sunflower Galaxy’s glow in the small, northern constellation Canes Venatici (the Hunting Dogs). We now know this galaxy is about 27 million light-years away and belongs to the M51 Group — a group of galaxies, named after its brightest member, Messier 51, another spiral-shaped galaxy dubbed the Whirlpool Galaxy.


Galactic arms, sunflowers and whirlpools are only a few examples of nature’s apparent preference for spirals. For galaxies like Messier 63 the winding arms shine bright because of the presence of recently formed, blue–white giant stars and clusters, readily seen in this Hubble image.


Image credit: ESA/Hubble & NASA

Text credit: European Space Agency

Last Updated: Sep. 11, 2015

Editor: Ashley Morrow



What Hubble Observed