Showing posts with label Black Hole. Show all posts
Showing posts with label Black Hole. Show all posts

Friday, 30 September 2016

Star Escapes Black Hole with Minor Damage

Star Escapes Black Hole with Minor Damage


Scientia — Astronomers have gotten the closest look yet at what happens when a black hole takes a bite out of a star—and the star lives to tell the tale.


black hole, supermassive black holes, galaxy, Royal Astronomical Society, planet, solar system




We may think of black holes as swallowing entire stars—or any other object that wanders too close to their immense gravity. But sometimes, a star that is almost captured by a black hole escapes with only a portion of its mass torn off. Such was the case for a star some 650 million light years away toward Ursa Major, the constellation that contains the “Big Dipper,” where a supermassive black hole tore off a chunk of material from a star that got away.


Astronomers at The Ohio State University couldn’t see the star itself with their All-Sky Automated Survey for Supernovae (ASAS-SN, pronounced “assassin”). But they did see the light that flared as the black hole “ate” the material that it managed to capture.


black hole, supermassive black holes, galaxy, Royal Astronomical Society, planet, solar system





In a paper to appear in the Monthly Notices of the Royal Astronomical Society, they report that the star and the black hole are located in a galaxy outside of the newly dubbed Laniakea Supercluster, of which our home Milky Way Galaxy is a part.


If Laniakea is our galactic “city,” this event—called a “tidal disruption event,” or TDE— happened in our larger metropolitan area. Still, it’s the closest TDE ever spotted, and it gives astronomers the best chance yet of learning more about how supermassive black holes form and grow.


black hole, supermassive black holes, galaxy, Royal Astronomical Society, planet, solar system


ASAS-SN has so far spotted more than 60 bright and nearby supernovae; one of the program’s other goals is to try to determine how often TDEs happen in the nearby universe. But study co-author Krzysztof Stanek, professor of astronomy at Ohio State, and his collaborators were surprised to find one in January 2014, just a few months after ASAS-SN’s four telescopes in Hawaii began gathering data.


To Stanek, the fact that the survey made such a rare find so quickly suggests that TDEs may be more common than astronomers realized.


black hole, supermassive black holes, galaxy, Royal Astronomical Society, planet, solar system





Star Escapes Black Hole with Minor Damage

Tuesday, 27 October 2015

Huge Flare from Black Hole

Scientia — The baffling and strange behaviors of black holes have become somewhat less mysterious recently, with new observations from NASA’s Explorer missions Swift and the Nuclear Spectroscopic Telescope Array, or NuSTAR. The two space telescopes caught a supermassive black hole in the midst of a giant eruption of X-ray light, helping astronomers address an ongoing puzzle: How do supermassive black holes flare?


X-rays, corona , NuSTAR, Black hole, galaxy, Supermassive black holes, NASA, Nuclear Spectroscopic Telescope Array

This diagram shows how a shifting feature, called a corona, can create a flare of X-rays around a black hole. Credit: NASA/JPL-Caltech


The results suggest that supermassive black holes send out beams of X-rays when their surrounding coronas—sources of extremely energetic particles—shoot, or launch, away from the black holes.


“This is the first time we have been able to link the launching of the corona to a flare,” said Dan Wilkins of Saint Mary’s University in Halifax, Canada, lead author of a new paper on the results appearing in the Monthly Notices of the Royal Astronomical Society. “This will help us understand how supermassive black holes power some of the brightest objects in the universe.”






Supermassive black holes don’t give off any light themselves, but they are often encircled by disks of hot, glowing material. The gravity of a black hole pulls swirling gas into it, heating this material and causing it to shine with different types of light. Another source of radiation near a black hole is the corona. Coronas are made up of highly energetic particles that generate X-ray light, but details about their appearance, and how they form, are unclear.


Astronomers think coronas have one of two likely configurations. The “lamppost” model says they are compact sources of light, similar to light bulbs, that sit above and below the black hole, along its rotation axis. The other model proposes that the coronas are spread out more diffusely, either as a larger cloud around the black hole, or as a “sandwich” that envelops the surrounding disk of material like slices of bread. In fact, it’s possible that coronas switch between both the lamppost and sandwich configurations.


The new data support the “lamppost” model—and demonstrate, in the finest detail yet, how the light-bulb-like coronas move. The observations began when Swift, which monitors the sky for cosmic outbursts of X-rays and gamma rays, caught a large flare coming from the supermassive black hole called Markarian 335, or Mrk 335, located 324 million light-years away in the direction of the constellation Pegasus. This supermassive black hole, which sits at the center of a galaxy, was once one of the brightest X-ray sources in the sky.


“Something very strange happened in 2007, when Mrk 335 faded by a factor of 30. What we have found is that it continues to erupt in flares but has not reached the brightness levels and stability seen before,” said Luigi Gallo, the principal investigator for the project at Saint Mary’s University. Another co-author, Dirk Grupe of Morehead State University in Kentucky, has been using Swift to regularly monitor the black hole since 2007.


In September 2014, Swift caught Mrk 335 in a huge flare. Once Gallo found out, he sent a request to the NuSTAR team to quickly follow up on the object as part of a “target of opportunity” program, where the observatory’s previously planned observing schedule is interrupted for important events. Eight days later, NuSTAR set its X-ray eyes on the target, witnessing the final half of the flare event.




After careful scrutiny of the data, the astronomers realized they were seeing the ejection, and eventual collapse, of the black hole’s corona.


“The corona gathered inward at first and then launched upwards like a jet,” said Wilkins. “We still don’t know how jets in black holes form, but it’s an exciting possibility that this black hole’s corona was beginning to form the base of a jet before it collapsed.”


How could the researchers tell the corona moved? The corona gives off X-ray light that has a slightly different spectrum—X-ray “colors”—than the light coming from the disk around the black hole. By analyzing a spectrum of X-ray light from Mrk 335 across a range of wavelengths observed by both Swift and NuSTAR, the researchers could tell that the corona X-ray light had brightened—and that this brightening was due to the motion of the corona.


Coronas can move very fast. The corona associated with Mrk 335, according to the scientists, was traveling at about 20 percent the speed of light. When this happens, and the corona launches in our direction, its light is brightened in an effect called relativistic Doppler boosting.


Putting this all together, the results show that the X-ray flare from this black hole was caused by the ejected corona.


“The nature of the energetic source of X-rays we call the corona is mysterious, but now with the ability to see dramatic changes like this we are getting clues about its size and structure,” said Fiona Harrison, the principal investigator of NuSTAR at the California Institute of Technology in Pasadena, who was not affiliated with the study.


Many other black hole brainteasers remain. For example, astronomers want to understand what causes the ejection of the corona in the first place.




– Credit and Resource –


Journal reference: Monthly Notices of the Royal Astronomical Society




Huge Flare from Black Hole