Showing posts with label galactic. Show all posts
Showing posts with label galactic. Show all posts

Thursday, 24 September 2015

Stealth Dark Matter Explains Universe"s Missing Mass

Freedawn Scientia, dark matter, universe, missing mass, Mass, Earth, Earth-based experiments, physicists , electromagnetic, galactic , galactic clusters, galaxies , quarks, neutron, Large Hadron Collider, early universe, particles

This 3D map illustrates the large-scale distribution of dark matter, reconstructed from measurements of weak gravitational lensing by using the Hubble Space Telescope.



Scientia — Lawrence Livermore scientists have come up with a new theory that may identify why dark matter has evaded direct detection in Earth-based experiments.


A group of national particle physicists known as the Lattice Strong Dynamics Collaboration, led by a Lawrence Livermore National Laboratory team, has combined theoretical and computational physics techniques and used the Laboratory’s massively parallel 2-petaflop Vulcan supercomputer to devise a new model of dark matter. It identifies it as naturally “stealthy” (i.e. like its namesake aircraft, difficult to detect) today, but would have been easy to see via interactions with ordinary matter in the extremely high-temperature plasma conditions that pervaded the early universe.






“These interactions in the early universe are important because ordinary and dark matter abundances today are strikingly similar in size, suggesting this occurred because of a balancing act performed between the two before the universe cooled,” said Pavlos Vranas of LLNL, and one of the authors of the paper, “Direct Detection of Stealth Dark Matter through Electromagnetic Polarizability”. The paper appears in an upcoming edition of the journal Physical Review Letters and is an “Editor’s Choice.”


Dark matter makes up 83 percent of all matter in the universe and does not interact directly with electromagnetic or strong and weak nuclear forces. Light does not bounce off of it, and ordinary matter goes through it with only the feeblest of interactions. Essentially invisible, it has been termed dark matter, yet its interactions with gravity produce striking effects on the movement of galaxies and galactic clusters, leaving little doubt of its existence.


Freedawn Scientia, dark matter, universe, missing mass, Mass, Earth, Earth-based experiments, physicists , electromagnetic, galactic , galactic clusters, galaxies , quarks, neutron, Large Hadron Collider, early universe, particles

Lawrence Livermore scientists have devised a new model of dark matter. It identifies it as naturally “stealthy” today, but would have been easy to see via interactions with ordinary matter in the extremely high-temperature plasma conditions that pervaded the early universe.




The key to stealth dark matter’s split personality is its compositeness and the miracle of confinement. Like quarks in a neutron, at high temperatures, these electrically charged constituents interact with nearly everything. But at lower temperatures they bind together to form an electrically neutral composite particle. Unlike a neutron, which is bound by the ordinary strong interaction of quantum chromodynamics (QCD), the stealthy neutron would have to be bound by a new and yet-unobserved strong interaction, a dark form of QCD.


“It is remarkable that a dark matter candidate just several hundred times heavier than the proton could be a composite of electrically charged constituents and yet have evaded direct detection so far,” Vranas said.


Similar to protons, stealth dark matter is stable and does not decay over cosmic times. However, like QCD, it produces a large number of other nuclear particles that decay shortly after their creation. These particles can have net electric charge but would have decayed away a long time ago. In a particle collider with sufficiently high energy (such as the Large Hadron Collider in Switzerland), these particles can be produced again for the first time since the early universe. They could generate unique signatures in the particle detectors because they could be electrically charged.


“Underground direct detection experiments or experiments at the Large Hadron Collider may soon find evidence of (or rule out) this new stealth dark matter theory,” Vranas said.






– Credit and Resource –


More information: Paper: arxiv.org/abs/1503.04205

Journal reference: Physical Review Letters

Provided by: Lawrence Livermore National Laboratory




Stealth Dark Matter Explains Universe"s Missing Mass

Dark Matter Core Defies Explanation in Hubble Image

Dark Matter, Freedaw, Scientia, Hubble, dark matter, dark core, galaxy , galaxy cluster,galactic


Scientia — It was the result no one wanted to believe. Astronomers observed what appeared to be a clump of dark matter left behind during a bizarre wreck between massive clusters of galaxies.


The dark matter collected into a “dark core” containing far fewer galaxies than would be expected if the dark matter and galaxies hung together. Most of the galaxies apparently have sailed far away from the collision. This result could present a challenge to basic theories of dark matter, which predict that galaxies should be anchored to the invisible substance, even during the shock of a collision.






The initial observations, made in 2007, were so unusual that astronomers shrugged them off as unreal, due to poor data. However, new results from NASA’s Hubble Space Telescope confirm that dark matter and galaxies parted ways in the gigantic merging galaxy cluster called Abell 520, located 2.4 billion light-years away.


Now, astronomers are left with the challenge of trying to explain dark matter’s seemingly oddball behavior in this cluster.


“This result is a puzzle,” said astronomer James Jee of the University of California, Davis, leader of the Hubble study. “Dark matter is not behaving as predicted, and it’s not obviously clear what is going on. Theories of galaxy formation and dark matter must explain what we are seeing.”


A paper reporting the team’s results has been accepted for publication in The Astrophysical Journal and is available online.


First detected about 80 years ago, dark matter is thought to be the gravitational “glue” that holds galaxies together. The mysterious invisible substance is not made of the same kind of matter that makes up stars, planets, and people. Astronomers know little about dark matter, yet it accounts for most of the universe’s mass.


They have deduced dark matter’s existence by observing its ghostly gravitational influence on normal matter. It’s like hearing the music but not seeing the band.


One way to study dark matter is by analyzing smashups between galaxy clusters, the largest structures in the universe. When galaxy clusters collide, astronomers expect galaxies to tag along with the dark matter, like a dog on a leash. Clouds of intergalactic gas, however, plow into one another, slow down, and lag behind the impact.


That theory was supported by visible-light and X-ray observations of a colossal collision between two galaxy clusters called the Bullet Cluster. The galactic grouping has become a textbook example of how dark matter should behave.


But studies of Abell 520 showed that dark matter’s behavior may not be so simple. The original observations found that the system’s core was rich in dark matter and hot gas but contained no luminous galaxies, which normally would be seen in the same location as the dark matter. NASA’s Chandra X-ray Observatory detected the hot gas. Astronomers used the Canada-France-Hawaii and Subaru telescopes atop Mauna Kea to infer the location of dark matter by measuring how the mysterious substance bends light from more distant background galaxies, an effect called gravitational lensing.


The astronomers then turned Hubble’s Wide Field Planetary Camera 2 to help bail them out of this cosmic conundrum. Instead, to their chagrin, the Hubble observations helped confirm the earlier findings. Astronomers used Hubble to map the dark matter in the cluster through the gravitational lensing technique.


“Observations like those of Abell 520 are humbling in the sense that in spite of all the leaps and bounds in our understanding, every now and then, we are stopped cold,” explained Arif Babul of the University of Victoria in British Columbia, the team’s senior theorist.




Is Abell 520 an oddball, or is the prevailing picture of dark matter flawed? Jee thinks it’s too soon to tell.


“We know of maybe six examples of high-speed galaxy cluster collisions where the dark matter has been mapped,” Jee said. “But the Bullet Cluster and Abell 520 are the two that show the clearest evidence of recent mergers, and they are inconsistent with each other. No single theory explains the different behavior of dark matter in those two collisions. We need more examples.”


The team has proposed a half-dozen explanations for the findings, but each is unsettling for astronomers. “It’s pick your poison,” said team member Andisheh Mahdavi of San Francisco State University in California, who led the original Abell 520 observations in 2007. One possible explanation for the discrepancy is that Abell 520 was a more complicated interaction than the Bullet Cluster encounter. Abell 520 may have formed from a collision between three galaxy clusters, instead of just two colliding systems in the case of the Bullet Cluster.


Another scenario is that some dark matter may be what astronomers call “sticky.” Like two snowballs smashing together, normal matter slams into each other during a collision and slows down. But dark matter blobs are thought to pass through each other during an encounter without slowing down. This scenario proposes that some dark matter interacts with itself and stays behind when galaxy clusters collide.


A third possibility is that the core contained many galaxies, but they were too dim to be seen, even by Hubble. Those galaxies would have to have formed dramatically fewer stars than other normal galaxies. Armed with the Hubble data, the group hopes to create a computer simulation to try to reconstruct the collision, hoping that it yields some answers to dark matter’s weird behavior.




– Credit and Resource –


Hubble




Dark Matter Core Defies Explanation in Hubble Image