Showing posts with label galaxy cluster. Show all posts
Showing posts with label galaxy cluster. Show all posts

Thursday, 24 September 2015

What is Dark Matter and Dark Energy?

Dark Energy and Dark Matter


In the early 1990s, one thing was fairly certain about the expansion of the Universe. It might have enough energy density to stop its expansion and recollapse, it might have so little energy density that it would never stop expanding, but gravity was certain to slow the expansion as time went on. Granted, the slowing had not been observed, but, theoretically, the Universe had to slow. The Universe is full of matter and the attractive force of gravity pulls all matter together. Then came 1998 and the Hubble Space Telescope (HST) observations of very distant supernovae that showed that, a long time ago, the Universe was actually expanding more slowly than it is today. So the expansion of the Universe has not been slowing due to gravity, as everyone thought, it has been accelerating. No one expected this, no one knew how to explain it. But something was causing it.


Eventually theorists came up with three sorts of explanations. Maybe it was a result of a long-discarded version of Einstein’s theory of gravity, one that contained what was called a “cosmological constant.” Maybe there was some strange kind of energy-fluid that filled space. Maybe there is something wrong with Einstein’s theory of gravity and a new theory could include some kind of field that creates this cosmic acceleration. Theorists still don’t know what the correct explanation is, but they have given the solution a name. It is called dark energy.






What Is Dark Energy?


More is unknown than is known. We know how much dark energy there is because we know how it affects the Universe’s expansion. Other than that, it is a complete mystery. But it is an important mystery. It turns out that roughly 68% of the Universe is dark energy. Dark matter makes up about 27%. The rest – everything on Earth, everything ever observed with all of our instruments, all normal matter – adds up to less than 5% of the Universe. Come to think of it, maybe it shouldn’t be called “normal” matter at all, since it is such a small fraction of the Universe.

Freedawn, Scientia, Dark Energy, Dark Matter, Space, Universe, matter, mass, space, Albert Einstein, cosmological constant, gravity , Hubble Space Telescope

This diagram reveals changes in the rate of expansion since the universe’s birth 15 billion years ago. The more shallow the curve, the faster the rate of expansion. The curve changes noticeably about 7.5 billion years ago, when objects in the universe began flying apart as a faster rate. Astronomers theorize that the faster expansion rate is due to a mysterious, dark force that is pulling galaxies apart.
NASA/STSci/Ann Feild



One explanation for dark energy is that it is a property of space. Albert Einstein was the first person to realize that empty space is not nothing. Space has amazing properties, many of which are just beginning to be understood. The first property that Einstein discovered is that it is possible for more space to come into existence. Then one version of Einstein’s gravity theory, the version that contains a cosmological constant, makes a second prediction: “empty space” can possess its own energy. Because this energy is a property of space itself, it would not be diluted as space expands. As more space comes into existence, more of this energy-of-space would appear. As a result, this form of energy would cause the Universe to expand faster and faster. Unfortunately, no one understands why the cosmological constant should even be there, much less why it would have exactly the right value to cause the observed acceleration of the Universe.


Another explanation for how space acquires energy comes from the quantum theory of matter. In this theory, “empty space” is actually full of temporary (“virtual”) particles that continually form and then disappear. But when physicists tried to calculate how much energy this would give empty space, the answer came out wrong – wrong by a lot. The number came out 10120 times too big. That’s a 1 with 120 zeros after it. It’s hard to get an answer that bad. So the mystery continues.


Another explanation for dark energy is that it is a new kind of dynamical energy fluid or field, something that fills all of space but something whose effect on the expansion of the Universe is the opposite of that of matter and normal energy. Some theorists have named this “quintessence,” after the fifth element of the Greek philosophers. But, if quintessence is the answer, we still don’t know what it is like, what it interacts with, or why it exists. So the mystery continues.
galaxy, galaxy cluster, Freedawn, Scientia, Dark Energy, Dark Matter, Space, Universe, matter, mass, space, Albert Einstein, cosmological constant, gravity , Hubble Space Telescope



A last possibility is that Einstein’s theory of gravity is not correct. That would not only affect the expansion of the Universe, but it would also affect the way that normal matter in galaxies and clusters of galaxies behaved. This fact would provide a way to decide if the solution to the dark energy problem is a new gravity theory or not: we could observe how galaxies come together in clusters. But if it does turn out that a new theory of gravity is needed, what kind of theory would it be? How could it correctly describe the motion of the bodies in the Solar System, as Einstein’s theory is known to do, and still give us the different prediction for the Universe that we need? There are candidate theories, but none are compelling. So the mystery continues.




The thing that is needed to decide between dark energy possibilities – a property of space, a new dynamic fluid, or a new theory of gravity – is more data, better data.


What is Dark Matter?



By fitting a theoretical model of the composition of the Universe to the combined set of cosmological observations, scientists have come up with the composition that we described above, ~68% dark energy, ~27% dark matter, ~5% normal matter. What is dark matter?


We are much more certain what dark matter is not than we are what it is. First, it is dark, meaning that it is not in the form of stars and planets that we see. Observations show that there is far too little visible matter in the Universe to make up the 27% required by the observations. Second, it is not in the form of dark clouds of normal matter, matter made up of particles called baryons. We know this because we would be able to detect baryonic clouds by their absorption of radiation passing through them. Third, dark matter is not antimatter, because we do not see the unique gamma rays that are produced when antimatter annihilates with matter. Finally, we can rule out large galaxy-sized black holes on the basis of how many gravitational lenses we see. High concentrations of matter bend light passing near them from objects further away, but we do not see enough lensing events to suggest that such objects to make up the required 25% dark matter contribution.

galaxy, galaxy cluster, Freedawn, Scientia, Dark Energy, Dark Matter, Space, Universe, matter, mass, space, Albert Einstein, cosmological constant, gravity , Hubble Space Telescope

One of the most complicated and dramatic collisions between galaxy clusters ever seen is captured in this new composite image of Abell 2744. The blue shows a map of the total mass concentration (mostly dark matter).



However, at this point, there are still a few dark matter possibilities that are viable. Baryonic matter could still make up the dark matter if it were all tied up in brown dwarfs or in small, dense chunks of heavy elements. These possibilities are known as massive compact halo objects, or “MACHOs”. But the most common view is that dark matter is not baryonic at all, but that it is made up of other, more exotic particles like axions or WIMPS (Weakly Interacting Massive Particles)





What is Dark Matter and Dark Energy?

Dark Matter Core Defies Explanation in Hubble Image

Dark Matter, Freedaw, Scientia, Hubble, dark matter, dark core, galaxy , galaxy cluster,galactic


Scientia — It was the result no one wanted to believe. Astronomers observed what appeared to be a clump of dark matter left behind during a bizarre wreck between massive clusters of galaxies.


The dark matter collected into a “dark core” containing far fewer galaxies than would be expected if the dark matter and galaxies hung together. Most of the galaxies apparently have sailed far away from the collision. This result could present a challenge to basic theories of dark matter, which predict that galaxies should be anchored to the invisible substance, even during the shock of a collision.






The initial observations, made in 2007, were so unusual that astronomers shrugged them off as unreal, due to poor data. However, new results from NASA’s Hubble Space Telescope confirm that dark matter and galaxies parted ways in the gigantic merging galaxy cluster called Abell 520, located 2.4 billion light-years away.


Now, astronomers are left with the challenge of trying to explain dark matter’s seemingly oddball behavior in this cluster.


“This result is a puzzle,” said astronomer James Jee of the University of California, Davis, leader of the Hubble study. “Dark matter is not behaving as predicted, and it’s not obviously clear what is going on. Theories of galaxy formation and dark matter must explain what we are seeing.”


A paper reporting the team’s results has been accepted for publication in The Astrophysical Journal and is available online.


First detected about 80 years ago, dark matter is thought to be the gravitational “glue” that holds galaxies together. The mysterious invisible substance is not made of the same kind of matter that makes up stars, planets, and people. Astronomers know little about dark matter, yet it accounts for most of the universe’s mass.


They have deduced dark matter’s existence by observing its ghostly gravitational influence on normal matter. It’s like hearing the music but not seeing the band.


One way to study dark matter is by analyzing smashups between galaxy clusters, the largest structures in the universe. When galaxy clusters collide, astronomers expect galaxies to tag along with the dark matter, like a dog on a leash. Clouds of intergalactic gas, however, plow into one another, slow down, and lag behind the impact.


That theory was supported by visible-light and X-ray observations of a colossal collision between two galaxy clusters called the Bullet Cluster. The galactic grouping has become a textbook example of how dark matter should behave.


But studies of Abell 520 showed that dark matter’s behavior may not be so simple. The original observations found that the system’s core was rich in dark matter and hot gas but contained no luminous galaxies, which normally would be seen in the same location as the dark matter. NASA’s Chandra X-ray Observatory detected the hot gas. Astronomers used the Canada-France-Hawaii and Subaru telescopes atop Mauna Kea to infer the location of dark matter by measuring how the mysterious substance bends light from more distant background galaxies, an effect called gravitational lensing.


The astronomers then turned Hubble’s Wide Field Planetary Camera 2 to help bail them out of this cosmic conundrum. Instead, to their chagrin, the Hubble observations helped confirm the earlier findings. Astronomers used Hubble to map the dark matter in the cluster through the gravitational lensing technique.


“Observations like those of Abell 520 are humbling in the sense that in spite of all the leaps and bounds in our understanding, every now and then, we are stopped cold,” explained Arif Babul of the University of Victoria in British Columbia, the team’s senior theorist.




Is Abell 520 an oddball, or is the prevailing picture of dark matter flawed? Jee thinks it’s too soon to tell.


“We know of maybe six examples of high-speed galaxy cluster collisions where the dark matter has been mapped,” Jee said. “But the Bullet Cluster and Abell 520 are the two that show the clearest evidence of recent mergers, and they are inconsistent with each other. No single theory explains the different behavior of dark matter in those two collisions. We need more examples.”


The team has proposed a half-dozen explanations for the findings, but each is unsettling for astronomers. “It’s pick your poison,” said team member Andisheh Mahdavi of San Francisco State University in California, who led the original Abell 520 observations in 2007. One possible explanation for the discrepancy is that Abell 520 was a more complicated interaction than the Bullet Cluster encounter. Abell 520 may have formed from a collision between three galaxy clusters, instead of just two colliding systems in the case of the Bullet Cluster.


Another scenario is that some dark matter may be what astronomers call “sticky.” Like two snowballs smashing together, normal matter slams into each other during a collision and slows down. But dark matter blobs are thought to pass through each other during an encounter without slowing down. This scenario proposes that some dark matter interacts with itself and stays behind when galaxy clusters collide.


A third possibility is that the core contained many galaxies, but they were too dim to be seen, even by Hubble. Those galaxies would have to have formed dramatically fewer stars than other normal galaxies. Armed with the Hubble data, the group hopes to create a computer simulation to try to reconstruct the collision, hoping that it yields some answers to dark matter’s weird behavior.




– Credit and Resource –


Hubble




Dark Matter Core Defies Explanation in Hubble Image