Showing posts with label microelectromechanical. Show all posts
Showing posts with label microelectromechanical. Show all posts

Saturday, 19 December 2015

Microsystems Nanodevice at one-hundredth the cost

New techniques for building microelectromechanical microsystems show promise.


microsystems, Nanodevices, microelectromechanical , accelerometers , smartphones, Microsystems Technologies, 3-D printing, electrospray , biological sensors

External row of seven emitters that are part of a 49-emitter array. The scalloping on the exterior of the emitters, due to the layer-by-layer manufacturing, is visible.
Image: Anthony Taylor and Luis F Velásquez-García (edited by MIT News)


Scientia — Microelectromechanical systems — or MEMS — were a $12 billion business in 2014. But that market is dominated by just a handful of microsystems devices, such as the accelerometers that reorient the screens of most smartphones.


That’s because manufacturing MEMS has traditionally required sophisticated semiconductor fabrication facilities, which cost tens of millions of dollars to build. Potentially useful MEMS have languished in development because they don’t have markets large enough to justify the initial capital investment in production.


Two recent papers from researchers at MIT’s Microsystems Technologies Laboratories offer hope that that might change. In one, the researchers show that a MEMS-based gas sensor manufactured with a desktop device performs at least as well as commercial sensors built at conventional production facilities.


In the other paper, they show that the central component of the desktop fabrication device can itself be built with a 3-D printer. Together, the papers suggest that a widely used type of MEMS gas sensor could be produced at one-hundredth the cost with no loss of quality.


microdevices, Nanodevices, microelectromechanical , accelerometers , smartphones, Microsystems Technologies, 3-D printing, electrospray , biological sensors

A completed chip with a wired graphene oxide gas sensor. The graphene oxide film is the greenish dot covering the electrode structure.
Image: Anthony Taylor and Luis F Velásquez-García


The researchers’ fabrication device sidesteps many of the requirements that make conventional MEMS manufacture expensive. “The additive manufacturing we’re doing is based on low temperature and no vacuum,” says Luis Fernando Velásquez-García, a principal research scientist in MIT’s Microsystems Technology Laboratories and senior author on both papers. “The highest temperature we’ve used is probably 60 degrees Celsius. In a chip, you probably need to grow oxide, which grows at around 1,000 degrees Celsius. And in many cases the reactors require these high vacuums to prevent contamination. We also make the devices very quickly. The devices we reported are made in a matter of hours from beginning to end.”


Welcome resistance

For years, Velásquez-García has been researching manufacturing techniques that involve dense arrays of emitters that eject microscopic streams of fluid when subjected to strong electric fields. For the gas sensors, Velásquez-García and Anthony Taylor, a visiting researcher from the British company Edwards Vacuum, use so-called “internally fed emitters.” These are emitters with cylindrical bores that allow fluid to pass through them.


In this case, the fluid contained tiny flakes of graphene oxide. Discovered in 2004, graphene is an atom-thick form of carbon with remarkable electrical properties. Velásquez-García and Taylor used their emitters to spray the fluid in a prescribed pattern on a silicon substrate. The fluid quickly evaporated, leaving a coating of graphene oxide flakes only a few tens of nanometers thick.


The flakes are so thin that interaction with gas molecules changes their resistance in a measurable way, making them useful for sensing. “We ran the gas sensors head to head with a commercial product that cost hundreds of dollars,” Velásquez-García says. “What we showed is that they are as precise, and they are faster. We make at a very low cost — probably cents — something that works as well as or better than the commercial counterparts.”


To produce those sensors, Velásquez-García and Taylor used electrospray emitters that had been built using conventional processes. However, in the December issue of the Journal of Microelectromechanical Systems, Velásquez-García reports using an affordable, high-quality 3-D printer to produce plastic electrospray emitters whose size and performance match those of the emitters that yielded the gas sensors.


Made to order

In addition to making electrospray devices more cost-effective, Velásquez-García says, 3-D printing also makes it easier to customize them for particular applications. “When we started designing them, we didn’t know anything,” Velásquez-García says. “But at the end of the week, we had maybe 15 generations of devices, where each design worked better than the previous versions.”


Indeed, Velásquez-García says, the advantages of electrospray are not so much in enabling existing MEMS devices to be made more cheaply as in enabling wholly new devices. Besides making small-market MEMS products cost-effective, electrospray could enable products incompatible with existing manufacturing techniques.


microdevices, Nanodevices, microelectromechanical , accelerometers , smartphones, Microsystems Technologies, 3-D printing, electrospray , biological sensors

Optical micrograph of a fabricated conductometric graphene oxide gas sensor. The inset (top left corner) shows a close-up view of the active area of the sensor.
Image: Anthony Taylor and Luis F Velásquez-García


“In some cases, MEMS manufacturers have to compromise between what they intended to make, based on the models, and what you can make based on the microfabrication techniques,” Velásquez-García says. “Only a few devices that fit into the description of having large markets and not having subpar performance are the ones that have made it.”


Electrospray could also lead to novel biological sensors, Velásquez-García says. “It allows us to deposit materials that would not be compatible with high-temperature semiconductor manufacturing, like biological molecules,” he says.


“For sure, the paper opens new technical paths to making gas microsensors,” says Jan Dziuban, head of the Division of Microengineering at Wroclaw University of Technology in Poland. “From a technical point of view, the process may be easily adapted to mass fabrication.”


“But promising results must be proved statistically,” he cautions. “Personal experience tells me that plenty of very promising materials for new sensors, utilizing nanostructured materials, which have been published in high-level scientific papers, haven’t resulted in reliable products.”


– Credit and Resource –


Larry Hardesty | MIT News Office




Microsystems Nanodevice at one-hundredth the cost

Thursday, 4 June 2015

Unlocking nanofibers’ potential

Prototype boosts production of versatile fibers fourfold, while cutting energy consumption by 92 percent.

Scientia — Nanofibers, polymer filaments only a couple of hundred nanometers in diameter — have a huge range of potential applications, from solar cells to water filtration to fuel cells. But so far, their high cost of manufacture has relegated them to just a few niche industries.


Freedawn, Scientia, Science, Science News, Latest, Space, News, Information, Biology, Physics, Nano, Technology, Chemistry, Space, Astronomy, Astrophysics, Animals, Robotics, nanofibers, versatile fibers, polymer , polymer filaments, solar cells, water filtration, fuel cells, MIT, electrospinning, electrode, microelectromechanical

A scanning electron micrograph of the new microfiber emitters, showing the arrays of rectangular columns etched into their sides.
Courtesy of the researchers


In the latest issue of the journal Nanotechnology, MIT researchers describe a new technique for producing nanofibers that increases the rate of production fourfold while reducing energy consumption by more than 90 percent, holding out the prospect of cheap, efficient nanofiber production.






“We have demonstrated a systematic way to produce nanofibers through electrospinning that surpasses the state of the art,” says Luis Fernando Velásquez-García, a principal research scientist in MIT’s Microsystems Technology Laboratories, who led the new work. “But the way that it’s done opens a very interesting possibility. Our group and many other groups are working to push 3-D printing further, to make it possible to print components that transduce, that actuate, that exchange energy between different domains, like solar to electrical or mechanical. We have something that naturally fits into that picture. We have an array of emitters that can be thought of as a dot-matrix printer, where you would be able to individually control each emitter to print deposits of nanofibers.”


Tangled tale

Nanofibers are useful for any application that benefits from a high ratio of surface area to volume — solar cells, for instance, which try to maximize exposure to sunlight, or fuel cell electrodes, which catalyze reactions at their surfaces. Nanofibers can also yield materials that are permeable only at very small scales, like water filters, or that are remarkably tough for their weight, like body armor.


Freedawn, Scientia, Science, Science News, Latest, Space, News, Information, Biology, Physics, Nano, Technology, Chemistry, Space, Astronomy, Astrophysics, Animals, Robotics, nanofibers, versatile fibers, polymer , polymer filaments, solar cells, water filtration, fuel cells, MIT, electrospinning, electrode, microelectromechanical


The standard technique for manufacturing nanofibers is called electrospinning, and it comes in two varieties. In the first, a polymer solution is pumped through a small nozzle, and then a strong electric field stretches it out. The process is slow, however, and the number of nozzles per unit area is limited by the size of the pump hydraulics.


The other approach is to apply a voltage between a rotating drum covered by metal cones and a collector electrode. The cones are dipped in a polymer solution, and the electric field causes the solution to travel to the top of the cones, where it’s emitted toward the electrode as a fiber. That approach is erratic, however, and produces fibers of uneven lengths; it also requires voltages as high as 100,000 volts.


Thinking small

Velásquez-García and his co-authors — Philip Ponce de Leon, a former master’s student in mechanical engineering; Frances Hill, a former postdoc in Velásquez-García’s group who’s now at KLA-Tencor; and Eric Heubel, a current postdoc — adapt the second approach, but on a much smaller scale, using techniques common in the manufacture of microelectromechanical systems to produce dense arrays of tiny emitters. The emitters’ small size reduces the voltage necessary to drive them and allows more of them to be packed together, increasing production rate.




At the same time, a nubbly texture etched into the emitters’ sides regulates the rate at which fluid flows toward their tips, yielding uniform fibers even at high manufacturing rates. “We did all kinds of experiments, and all of them show that the emission is uniform,” Velásquez-García says.


To build their emitters, Velásquez-García and his colleagues use a technique called deep reactive-ion etching. On either face of a silicon wafer, they etch dense arrays of tiny rectangular columns — tens of micrometers across — which will regulate the flow of fluid up the sides of the emitters. Then they cut sawtooth patterns out of the wafer. The sawteeth are mounted vertically, and their bases are immersed in a solution of deionized water, ethanol, and a dissolved polymer.


When an electrode is mounted opposite the sawteeth and a voltage applied between them, the water-ethanol mixture streams upward, dragging chains of polymer with it. The water and ethanol quickly dissolve, leaving a tangle of polymer filaments opposite each emitter, on the electrode.


The researchers were able to pack 225 emitters, several millimeters long, on a square chip about 35 millimeters on a side. At the relatively low voltage of 8,000 volts, that device yielded four times as much fiber per unit area as the best commercial electrospinning devices.


The work is “an elegant and creative way of demonstrating the strong capability of traditional MEMS [microelectromechanical-systems] fabrication processes toward parallel nanomanufacturing,” says Reza Ghodssi, a professor of electrical engineering at the University of Maryland. Relative to other approaches, he adds, there is “an increased potential to scale it up while maintaining the integrity and accuracy by which the processing method is applied.”






– Credit and Resource –


Larry Hardesty | MIT News Office



Unlocking nanofibers’ potential